
Old dog, with new tricks - ISFB v3 loader

Maciej Kotowicz

Introduction

Some time ago I released an extensive paper on ISFB[1], a modular malware
that is notoriously used by cyber-criminals all over the world to steal money.
ISFB is an offspring of the legendary Gozi. This infamous malware family is
with us already for over 10 years, having it ups and downs but still being actively
developed and forked by various criminal groups - especially this year it seems
like a go to tool for some of the most notorious gangs.

Loader

When it comes to binary file formats, the Portable Executable (PE) format is
not very complicated one. This means, writing a custom loader is quite simple
and many malware families are exploiting this. However, not many of them
employ their own proprietary data structures resembling a file format to store a
decoupled binary. While a PE file stores a lot of information, only some of it is
needed to actually successfully execute the binary. One can split a PE file into a
few basic blocks

• Header represented by IMAGE_NT_HEADERS
• Sections represented by an array of IMAGE_SECTION_HEADERs
• Extra Data represented by an array of IMAGE_DATA_DIRECTORYs

Those are the most important pieces of an ordinary PE file, which contain
information on which bytes should be loaded where and how memory in a
newly spawned process should be protected. Other relevant information that is
contained in those headers are for example related to resolving external symbols
(e.g. to the Windows API). Of course those parts can be further decoupled and
mixed but for this report we will focus on how the authors/maintainers of ISFB
approached this challenge.

1

Rebuilding an Image

Let’s tackle the main header first. After some reversing we can describe the
main header as the following C-structure:

struct __declspec(align(4)) LDR::header
{

DWORD exports[3];
DWORD NtHeadersOffset;
DWORD TotalSize;
DWORD HeadersSize;
WORD gap18;
WORD field_1A;
DWORD ImportsSize;
DWORD ImportsOffset;
DWORD field_24;
DWORD field_28;
DWORD ExportOffset;
LDR::data_entry DataDirectory[3];
DWORD field_54;
DWORD RelocsSize;
DWORD RelocsOffset;
WORD field_60;
unsigned __int16 NumberOfSections;
DWORD EntryPoint

};

As we can see it is not a very complex structure and fortunately most of data of
an original PE file is preserved inside the binary as a blobs that are copied into
their proper locations.

After this header follows the table containing a modified IMAGE_SECTION_HEADER
that looks like this:

struct LDR::section
{
DWORD VirtualAddress;
DWORD VirtualSize;
DWORD OffsetData;
DWORD SizeOfRawData;
DWORD Characteristics;

}

This structure is totally redundant because the original section headers are
already included in data pointed to by NtHeadersOffset. On the other hand,
they can be very useful to us because we can use this information to re-map
sections from a given BLOB into proper offsets in the file like this:

2

for i in range(hdr.NumberOfSections):
s = m.read_struct(LDR_section)
st = pe.get_section_by_rva(s.VirtualAddress)
out.seek(st.PointerToRawData,os.SEEK_SET)
out.write(m.read_at(s.DataOffset,st.SizeOfRawData))

After this step, we are almost done with rebuilding a whole legitimate PE file.
What is left is to map all remaining data structures into their proper location,
for example the Import Address Table (IAT):

imports
imp_rva = pe.OPTIONAL_HEADER.DATA_DIRECTORY[IMP_IDX].VirtualAddress
imp_off = pe.get_offset_from_rva(imp_rva)
out.seek(imp_off,os.SEEK_SET)
out.write(m.read_at(hdr.ImportsOffset,hdr.ImportsSize))

Lastly, don’t forget about those data directories from the PE header. Those are
very important and in next section we will explain why.

Static Configuration

For as long as we remember ISFB had their static configuration stored somewhere
in the last section with a pointer to it hidden just after the section table. This
has changed! THe authors of version 3 decided that it is about time to make
some significant changes and they moved the pointer to the static configuration
into the data directory. To be more precise, the abuse the field designated for
ENTRY_SECURITY.

Why is this important? Because this data directory is one of the LDR::directory
fields you can see in the LDR::header! This discovery makes our life much easier
since we don’t have to rebuild a whole binary every time. In order to extract
the static configuration data, we only need to get the second data directory and
sections headers.1 Using Python, this can be achieved like this:

def make_memory(data):
m = ISFBv3M(data)
hdr = m.read_struct(LDR_header)
doff = hdr.DataDirectory[1].Offset
dsize = hdr.DataDirectory[1].Size
sections = []
for i in range(hdr.NumberOfSections):

s = m.read_struct(LDR_section)
sections.append(s)

m.load_rsrc(m.read(doff,dsize))
m.load_sections(sections)
return m

1we need to map rvas from config into file offsets

3

There are a couple of more cosmetic changes done in v3 regarding the static
configuration:

• no more FJ or similar tell-tale constants in the binary, the real magic-tags
are obfuscated

• a simplified and obfuscated joined resource header
• simplified flags around this joined resource - now the only flag is either 0

or 1 depending on whether the item is compressed or not

Lets take a quick look at how the new joined resource header is constructed,
since this is the only relevant change.

In previous versions the joined resource header looked like this

struct CONFIG::Item::Hdr
{

WORD magic; // FJ, J1, JJ etc
WORD skip;

DWORD addr;
DWORD size;
DWORD crc32_name;
DWORD flags;

}

Those fields could be re-arranged depending on version. In contrast, now it looks
like this:

struct CONFIG::Item::Hdr
{

DWORD flags; // also xor key
DWORD crc32_name;
DWORD size;

DWORD addr;
}

The flags also act as a XOR decryption key for the remaining fields, meaning
that one cannot simply write rules looking for known crc32_name values in order
to detect unpacked samples. Armed with this knowledge it’s quite simple to
extract all the relevant information. Fortunately, no changes where made to the
method by which parameters2 are parsed so we can happily re-use our code for
previous versions.

Closing Remarks

It is extremely hard to track variants of this family. One big reason is that
most researchers and anti-x companies are using a wild mix or sometimes similar

2item with crc32_name equals to 0x8fb1dde1

4

names (mostly “Gozi”) for different malware samples, collapsing a quite complex
family structure into a supposedly singular super cluster. While this is acceptable
for detection purposes since their capabilities are not tremendously different, it
can get quite messy if you want to track or research a particular actor group
and/or development strain. At the time of writing, I’m pretty sure there are 3
independent groups maintaining and developing the main bot code:

• Dreambot - the most prominent developers that are behind most changes
• IAP - probably the original authors - they have some working relationship

with Dreambot guys because changes are going back and forth between
them

• TheLoader - looks like new kids on the block. They can be seen as a first
stage downloader in various spam and malvertasing campaings which later
are pushing a worker module or separate additional malware families such
as Rammnit or Dridex.

That being said, without direct access to the criminal underground it remains
pure speculation, since some groups may come and go. Also, the level of
cooperation beetween potential independent groups is unknown. Take it with a
grain of salt, but I put a lot of hope into the future of this malware, as this is
one of not so many families that are still creatively and actively developed and
bring us as analysts interesting work.

References

[1] M. Kotowicz, “ISFB: Still live and kicking,” The Journal on Cybercrime &
Digital Investigations, vol. 2, no. 1, 2017 [Online]. Available: https://journal.
cecyf.fr/ojs/index.php/cybin/article/view/15

5

https://journal.cecyf.fr/ojs/index.php/cybin/article/view/15
https://journal.cecyf.fr/ojs/index.php/cybin/article/view/15

	Introduction
	Loader
	Rebuilding an Image
	Static Configuration

	Closing Remarks
	References

